
-A176 386 ON TNE COMPUTATION OF NULTI-DIMENSIONAL SOLUTION l
MANIFOLDS OF PARAMETRIZE..(U) PITTSBURGN UNIV PA INST
FOR COMPUTATIONAL MATHEMATICS AND APP , W RHEINBOLDT

UNCLASSIFIED NOV 86 ICHR-86-i82 W8994-88-C-9455 F/G 12/1 U

EomhomhommomiI



11.

-IJI 2 _!.4 II.6=

- SL

MICROCOPY 
RESOLUINT 

TCH T

: 40 III,

1111 i 1f.1

V 
..

'11



00

INSTITUTE FOR COMPUTATIONAL
MATHEMATICS AND APPLICATIONS

-Technical Report ICMA-86-102 November 1986

On kone .,-utation of Multi-dimensional Solution

Manifolds of Parametrized Equation- 
I,

'p

It'

Department of Mathematics and Statistics

University of Pittsburgh

__ DTIj

S. S D

"2i.'6. ,,f. ft am



7

1 4

Technical Report ICMA-86-102 November 1986

On the Computation of Multi-dimensional Solution

Manifolds of Parametrized Equations
1

NS

by

Werner C. Rheinboldt I

Institute of Computational Mathematics and Applications D C i
Department of Mathematics and Statistics

University of Pittsburgh
Pittsburgh, PA 15260 U

1. This work supported in part by the National Science Foundation under
grant DCR-8309926, the Office of Naval Research under contract
N-00014-80-C-9L55, and the Air Force Office of Scientific
Research under grant 84-0131.

L%
,** .*'. * -. ," . °d'



On the Conputation of Mufti-dimensional Solution

Manifolds of Parametrized Equations 1) Aoceion For

NTIS GRA&I
DTIC TAB ft
Unannounced ["

by Justiricatio

Werner C. Pheinbold 2) By

Dedicated to Professor Nvo Babuska at his Sixtieth Birthday Distribution/.
Availability Codes

Avail and/or
Dist Specialr

Abstract: A nw algorthm is presented for computing vertices of a siplicial 

tiangulation of the p-dirnensional solution manifold of a parametrized equation

. F(x) = 0, where F is a nonlinear mapping from pn to pm, p=n-m>1. An essential part of

the method is a constructive algorit for computing moving frames on the manifold, ".,

that is, of ortho norma I bases of the ta nge nt spaces that vary smooth ly with the r points

of contact The tiangulation algorithm uses these bases, together with a chord form of

the Gauss-Newton process as corrector, to compute the desired vertices. The Jacobian "

matrix of the mapping is not required at all the vertices but only at the centers of certain

Slocal Thangulation patches'. Several numerical examples show that the method is very

*. efficient in computing tiangulations, even around singularities such as limi points and

bifurcation points This opens up new possibiltes for determining the form and special

features of such solution ma i.folds.

I) This work was supported in part bu the National Science Foundation under Grant
DCR 7 8309926, the Office of Naval Research under contract N- 0001 4-80-C- 9455, and the
Air Force Office of Scientific Research under Grant 84-0131

2) Institute for Computational Mathematics and Applications, Department of Mathematics and
Statistics, University of Pittsburgh, PA 15260

.'N S ,,
'.. ,L.'

"Nr "''~~'''~ --.- ~S ~'V>9'>' V K- \&~:.'.,-, V,, -

~ w (~ V ~ ** , *:* * -. ,-



A

'71

1 Introduction

Parameter-dependent nonlinear equations
i

F(z, X) = 0, (1.1)

involving a state variable z and aparametervector A, arise in many applications.

Under natural conditions on F and the relevant spaces the set of solutions (z, A) of

(1.) constitutes a differentiable manifold in the product of the state and parameter ,.

space, and the dimension of this manifold equals the parameter dinension.

In most practical applications interest centers not so much on computing a few

solutions of (1.1), but rather on determining the form and special features of the

solution manifold. For instance, 1(1.1) represents an equilibrium problem, then Ye,

may wish to determine the bifurcation diagram or the boundaries of the stability regions

on the manifold. Bt, as t turns out, all standard computational methods for such an

analysis require us to constuct a picture ofa p-dimTensional manifold from inforrnation

along one-dimensional paths. In fact, all these methods belong to the family of

continuation processes for which the dimension of the parameter space always has to a
equal one Thus, before such a process can be applied, any problem with a larger

parameter dimension must be reduced to some form involving only a scalar Yalued

parameter and, geometrically, such a reduction is equivalent with a restriction to some

path on the solution manifold of the original equation A continuation method then

corputes a sequence of points along such a path. For example, in structural

engineering the parameter A often characterizes a vector of load components in which

case it has become customary to fix a linear combination of these components

mf4"



'specifyin a particular load drection. The resultin reduced equation then involves

," only the load intensity as a one-drnensional parameter variable and the standard

incremental' methods generate points along this load path.

In qeneral, it is not easy to develop a good picture of a p-dimensional manifold from
S-.

', riorrnation along one-dimensional paths Thus it is not surprising that there is growing

9 ierest in computational methods wh ich 9enerate multi-dimensional Irids of solution

po ints covering an entire segment of the manfold. Up to now the only method for

computing such multi-dimensional grids appears to be that of E.L.Allgower and

P H Schmidt [21. It utilizes a simplicial continuation akgxithm to "triangulate", by means

of p-simplices, a portion of a p-dimensional manifold defined by an equation of the

. form (11)

Here we present a different method for computing vertices of such a tiangulation of

, segments of the p-dimensional solution manifold of an equation (1.1). An essential

part is a constuctie algorithm for computing orthonormal moving frames on the

mantold in the sense frst considered by E. Cartn that is, of orthonorma I bases of the

tangent manifolds that vary continuously with their po nts of contact (see e.,. [I71)

The resultino trianculation alcorithm uses these bases and a predictor-corrector

approach to compute the desred carid points Its has ma ny similarities with the

continuati)n methods includina a comparable compuationa I complexit,' In particular,

rhe Jcobtia n matrix of the mapping rs not required at all the points For example, con 3-..

, i-d ime n; -: n a ma nutf Id the cornp ua tio n of a typ. ia I tia no u Iatio n pa :errn wir I 14

tr uI,: " reluires only 19 Jacobia n decomposituns-"

U

*: Arer sumnmarizinga some basic concepts; in Section 2 we introduce the rmovinql fr.me
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Sectin 5 presenlIs several numnencal examples. Finally, we end with an outkIok on the

• , ~utili,.'ation or the computed bIlangulatior for the determination of specifi features of

"-" th rnanifold. :
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2. Basic Concepts

Throughout this article, et

F: S - R, S open in pn, p= n-m>I, (2.1)

be a dilerentiable mapping of class Cr, r > I, on the subset S. As usual, a point x e S

is called regular (the first deri~ative, DF(x), of F has full rank m and hence maps Rf

4onto m. We consdier heequation

F(x)=O ,xeS, (2.2)

and assme that its regular solution set

M ={'e S; F(x)= 0, x regular) (2.3)

is non-ern14. It is w*ll-known thatM is a p-dirnensional Cr-manifold in Rn wiVhout

boundary(see, e.g., [1if or [151].

The tangent space TM at any point x e M may be identified with the kernel of the

Jacobian DF(x), that is,

TV= ker DF(x)= u Pn DF(x)u= 0). (2.4) ""

The ,.n.a! space NxM at x e M, is ,he orthogonal complement of the tangent space
::C
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tV" under the natural Euclidean inner product on An, that is,

NxM = (TMyJ = (ker DF(x)) - = rge DF(x)T (2.5)

Since D(x) has maxinal rank in some open subset Soof S cortainingM, the

mapping

X So 4 DF(x)T[DF(x)DF(x)T]IDF(x) e L(Pn) (2.6)

from SO into the space L(PRn) of all linear isomorphisms on pn is of class Cr-1 on S0.

Hence, the orthogonal projection

'C P. M -L(P) P(x) =In- DF(x)T DF(x)DF(x)T-i DF(x), x e M (2.7)

of Pnonto TxM isa mapping ofclass Cr'1 on the manifold M, (here In denotes the

.i.,n ityon Rn)

For the computation we requre local coordinate systems on M. Any p-drnensiona I

suibspace T of pn induces a local coordinate system of M at any point x e M where

T n NXM = (01, (2.8)

In fact, if (2 8) holds fr x -M then there exist open neighL-rhoods V1 and V2 of the

origins of T and Pn, respectively, as well as a unique Cr-1 function wV I - Ti with

0) = 0, such that

.°. - - • ' ' ' ''. '". yr &'.' . .'. "". i " .",, " °g " " ," " .*:1 * .>.-- "- . .- Z" . " . "
.s','.'.f.",:



MflY2 ={ye R; yx +t +w t), teV1}, (2.9)

(see, e.g., [91 or 1 5). In other vords, in the local coordinate system induced by T, the

point y =x+t+wt) of M has the coordinate t T.

A point x M where (2.8) holds isa non-singular pointwith respect to the given

coordinate space T, else ve call x a singular point. Clearly, at any point x e M the

tangent space TxM can be chosen as coordinate space and x is non-singular with

respect to it. In most applications, a "naturar parameter space A is given, as indicated

by the forrn ofthe equation (1.1), and the orthogonal subspace Z = A-L isthestate

space. Then interest centers on determining the singular points with respect to the

A space A. These are the so-called foldpoints on M where the tangent space has a

non-zero intersection with the state space Z and the parameter space A can no longer

be used as a local coordinate space. These are also the points where, for example, in '3

equilibrium problems a change in the stability behavior of the physical system under

study may be expected. :'

Nurerically, the mapping wof (2.9) can be rnplemented in various ways A sirple

approach is based on a chord form of the Gauss-Newton method. At the given point

xe M we compute the OR-factorization

DF(x)T = o (2.10)

S0

of the 'ansposed Jacobian DF(x)TI nvoling the n x n hog, onal matix 0 and m x m.

- ->-.-rX,.- p

- " , ,r % % -% ' " #- " " , , " ~ . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . .".".". .... . . ."... . . . . .". -" * ""--
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nonsangular, t:per iangular matix A. Then, starting from any point y in a suitable

neigorhoodofx inx+TxM, Yw may apply the process

-1) Setfy = y;

2)for k = 0,1,... until convergence (2.11)

2a)solve RTz= F(yk) for z r RP;
.... 2b) compute the next iterate yk+ I Qy k (Z0)T;

With (2.10) this is readily rewtten in the form

.-.,

DF(x)(yk+l-t) + Fy)= 0 , e [kerDF(x)9, k=0,1, (2.12)

which shows that yk+1. yk _ NxM .Thus oe have e y+NxM for all k > 0,

whencethe limitpointy* - f itexists- isthe unique point inthe intersection ofM and

y+NxM which, in the notation of (2.9), can be writen as y* =x+t+ytt), t=y-x.

The convergence theory of Gauss-Newton processes is wll understood. Earlier

studies of these methods considered applications to least squares problems and

hence ass uned that F maps Rn into pm where n < m. A local convergence result which

covers our case n > m may be found in [8, Theorem 4]. Another simple proof for the

method in the form (2.12) also follows along the lines of the convergence proof for

singular chord methods given in [14]. These results guara ntee the validity of the

-. , following theorem:

Theorem 1. Underthe stated assumptions about the mappin F there exists forany
vs '



9

point x of M a neighborhood Y(x) of x in x+TxM such thatforany startingpoirt yin

- '1(x) the Gauss-Nevton process (2.11) converges to the unique point y* in the

irtersction of M and y+NxM that has the coordinate t =y-x in the local coordinate

system induced by the tangent space TxM.

AliA
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3 A Moving Frame Algorithm

As usual, a vector field of class Cs , s r r, on an open subset M0 of our manifold M is

a Cs function u. M0 - TM from M 0 into the tangent bundle TM such that u(x) ry Tm for

all x eM 0 A moving frame of class Cs on M0 is a mapping which associates with

each x e M0 a frame (i.e.,ordered basis) {u1 , uP) of TxM such the functions

u M0o TM, i=1,.,p, form p vectorfields of class Cs on M0 . When such a moving

frame exists on M0 then the sub-manifold M0 is said to be parallelizable. We will

consider only orthono rmal moving frames, that is, frames for which the basis vectors

are orthonornal .(Fora discussion of these concepts see, e.g., 117].) .
• . -

Clearly, the problem of computing an orthonormal basis of the tangent space TxM of U

M ata gien pointx M is equialentwith the construction of an n x p maftix U with

ortho normal co lInns for which

DF(x)U= 0 (3.1)

There are many techniques for computing such a matrix. A vwlI-known procedure is 4

provided by the OR-decomposition (2.10). In fact, i the matrix 0 is partioned in the form

. Q=(0 1,0 2) where 01 has m columns then we may use U =Q 2 as the desired basis.

Various other techniques for computing U have been proposed. We mention, in

particular, the methods in [5] and [6] airred at producing sparse bases U.

An algorith for consbtucting a moving frame of class CS on some open subset M0

of M has to g enerate a basis mahrix U = U(x) for each x M 0 in such a way that the
t) 

#'- i
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mapping U: M0 -4 L(W, Rn) is of'class Cs. As T.F.Coleman and D.C. Sorensen 7]I

have noted, the approach based on the OP-decompostion does not giwe

continuously varying matrices L(x). This obserration extends to other algoritirn of a

similar nature; in fact it relates directly to the corresponding problems of computing

*eigenvectors associated with a multiple eigenyalue. Three remedies are proposed in -

[7 but they concern only the corstrucion of a limit U0 of a sequence of bases U(x)

when xtendstox..

For our conruction of a moing frame Ye restrict attention to open subsets M0 of M
where a given p-dirnensional subspace T of Rn induces a local coordinate system; that

is, where (2.8) holds for all x of M0.With a mild abuse of language, let T0 be a p x p

matrix with orthonormal columns which span the coordinate space T. Moreover,

assume that we have picked some method for computing atany point x of Mo an n x p

matrix Lxx) with orthonormal columns that span the tangent space TxM at x. Of course,

U is not expected to depend continuously on x. For instance, Ye may use the matrices

produced by the 0R-ecomposition technique. For any orthogonal p x p matrix 0=

Q(x) the matrix U(x)Q is another orthonormal basis of TxM and our aim is to construct

. matrices O(x) such that the "rotated' bases U(x)Q(x) depend continuously on x for all x Vin Mo . "

The normalization (To)TTo = lp suggests that we choose the orthogonal matrix 0

so that (U(x)0)TTo approx mates the ide ntity Various norms may be used for this,

an advantageous choice is the Frobenius norm 11 A IIF I tr(ATA) ]112. The resulting

optimization problem

.k.:..*l
9... rJ C-- ~ * .~- - - - - - - . cc --- . . -

Sh!vj g:tr t t t . -. . . .- *



(IA())TT- IIF = mrain subecto T__ (32)..

:s a case ofthe orthogonal Procustes problem As discussed in 1121, thefolkwing

agorthm solyes (3.2):

(1) Uo := LKx)TTo,

(2) comp t e the sirnqular Yalue d :omvs on (3 3)

ATUB= Z ard sae A and B.

(3) 0 =ABT;

For our purposes tIe essential fact is now the content of the follownq theorem

Theorem 2 Let Mo be anopensubsetof Monwhichthegr enp-dirnensional

subspace Tof pn induces a localcoordinate system. Forany x e Mo, let U(x)be an

orthonormal basis matrix of TxM and compute the orthogonal ma 0= xQ(x) of (33).

Then the mapping x Mo --) oXx)Q(X) a L(IxRn) is of class C" on Mo and defines

a n ortho normalI moy ing ftame on M

Proof- Eyedenty, UOz - 0 iplies that the tangent etor U(x)z E T) must be

orthogonal to the subspace T of pn spanned by the columns of To, and, and hl,,ce that

J(A)2 eW By construction ofM o this cannot happen forx e Mo unless z = 0 In other

words, forx e MO the matrices Uo and I arisin in (3 3) are non-singular Now "

I_ A,,BT -AT(BTIC) =OH. H = TZE.

...................... ,
. ' . -. ' . " " ." " " '' % • " ." '. :." ., - % % % %"'-.% .. % "L ' '.
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ts the polar decomposition of Uo and it follows that

H= [(Uo)TUollI , [(jo)TL(x)U x)TTo 112

is non-singular, whence

0(U0)TT0 I(T )TuLx~(xT E112.

Eviently, ULx)qx)T= Pox) is the othogonal projection (2.7) from Rn onto TxM. Thus

we see that

UJ(x) = p(x)To [(To)Tp(x)Tor 112  (3.4)

and, since P was already shown to be of class Cr-1 on M, the result follows.

Our overall moying ftrame algorntin on MO now consists of the following three steps:

(1) Giwen xEM o, compute the basis matrix U(x) of TxM;

(2) compute the oWt nal matrix by (3.3); (3.5) K..-

- (3) form the desred basis mai Jx)O.,

If the QP-factorzation is used in step (1), then the order of the number of f l<ati -

poirt operatons requred is as folows: ..

Computation of (x) O nm2)

Mulipcation LUx)TTo O(np 2)

4- **4.'4 * 'V .- 4~*~- -*-.--' 4 * -:- -L 4A -4z

4. 4**V*.. *m44 4 4 J . J* * *'*.*. 4 " .
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Singular value decorposition O(p3)

Formation of the product LKx)Q O(n+p)p)

Thus, when the dimension p of the manitold is small in comparison with the space-

dimension n, as is typical in applications, then the principal cost is related to the
01O-factorization of DF(x)T and involves about (2 13)n 3 operations. This is indeed

analogous to the complexity of a standard continuation process.

For the practical implementation it is certainly desrable to choose the basis matrix

To of our reference coordinate space T in Fn as simply as possible. In particular, it is

very advantageous to define T as a suspace spanned by p appropriate natural basis

vectors e1 ,...,e n of An. Then To can be taken as a mafx with columns ei with certain

distinct indices i= sijn, j1,..p For the choice of these indices, recall thatfor any x

of M and given vector a Antheprincipalangle me 10,W2 between TjM and

span{a) s defined by

cos(t) = max( uTa; us TXM, Iul12 = 11

Evidently, i a is one of the global basis vectors of pn, then

coS()=IlU(x)TeiII 2, i=l,...n; (3.6) -"

that is, the Euclidean norm of the i-th row of U(x) is the cosine of the priqcipal anqle

between the tangent space TxM and the i-th coordinate line span{e i} of pn. Since the ..

Euclidean norm is invariant under orthogonal transformations, it is obvious that the

principal angle does not depend on the particular basis U(X)o(TxM

c asis. o
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'-'.. This suggests thAe stied selection of To . We initialize our moving frame aklr

at some reference point x* of M and compute a basis matrix U(x) ofthe tanget space

of M at this point This allows for a straightforward calculation of the principal direction

cosines ri=cos(c) of (3.6) which" eorder in descending order of size. Let il,.. .ip be

the indices of the p largest of these ri (with ties broken,say, by lexicographic ordering),

then the corresponding natural basis vectors of pn span our reference coordinate

space T and form the columns of the basis matrix To S ince U(x*) has rark p, none of

the selected coordinate directions can be orthogonal to the tangent space. Hence, as

required, x* is a non-singularpointwith respectto T, and the subset Moof Theorem I

contains an open neighborhood of x* on M. Geomeically the constructed subspace T
jli is close to the tangent space of M at x* in the sense of the above maximization of the

direction cosines (3.6). In fact, our construction is analogous to the local coordinate

S selection used in the continuation program PITCON (see [15] or11 6D. Obviously, this

choice of To also has the advantage that the comnputation of the matrix U0 in step (1) of

the algorithm (3.3) smly becomes an extraction ofp of the rows of U(x). y-

A frequently occing case are manifolds with densonp = 2. Forthemwecan IIII

P compute, up to signs, a direct representation of the orthogonal matix 0 of the algorithmn

(3.3). In fact, suppose that -.

U o =, ..

IS the mabt- in step (1) of(33) Then a straightforward calculation shows that

. ,.................... .
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S4. A Triangulation Algorithm

The resuts of the previous section are now used to generate the desired
triangulation on a subset of our manifold M. The basic idea is as follows, We introduce

a reference triangulation on AP' and use the bases produced by the moving framne

* akgorthm to map se~pients of it onto the spaces x+TxM corresponding to appropriate

points x on M. Then the Gauss-Nevoton process (2.11) is applied to "project' these

frianclulations from x+T~M onto M.

The reference triangulation of course, is any coyering of AP' by a locally finite

collecion of p-srrplices such that any Mo of these sirriplices, intersect ether in a

cornrnon face or not at all. The liteature on this topic is large and we refer here only to

the discussion of various nurmerically etient triangulations in (181. Our algorthm does

not place any particular restrictions on the choice of this triangulation except that we

should be guided by conskdeations of compttional srTlicty. Let I be the collection

- of srnplicec, of thiustriangulation.

Most triangulations used in srrplicial continuation studies are generated by pryoting

rules. A srle such ruleis pryoting by reflection For any index je {1,2,...p) set j+=

W. and j.j-1 with the proviion that 1+ 1 tj pand ,.p (1= 1 .Thenfora

-' iven p-srrpiex a = [jy 1 , yPIiIn PP, pivoting by reflection of the Ytitex yI is defined

- as the replaceratoby ttsrn)Iex [y , ,yhY)++yh-yI.YUJl 0iV~

<qren reference sirnplex in PP, thten by repeated applicati of this procedure a

tria nqulatK)n of PPcan be cjenerated (see, eQ ji



A frequently used example is the so-called Kuhn triangulation which I generated by A

repeated proting by reflectin starting with the simiplex

ao 0 ,=[ 0el"e 1 +e 2,...,el +e 2  + eP]

In the often occuring case p = 2. e can also use triangulations of p2 by equilateral

triangles generated by pivoting by reflection beginning with the 2-simplex

a 0  e=[ l,, 0.5(e 1 +v3 e2) (4.1)

Let , denote a grven vertex of the triangulation in AP and 6 > 0 a fixed steplength.

Then for any point x E M where a basis mabtix U of T.M is known the mapping

A, P->x+TxM, ATI=x+.SU(I-,), rGI:P (4.2)

transfers Z onto x+TxM. As in Theorem 1, let V(x) denote the local convergence

domain in x+TxM of the Gauss-Newton process (2.11) frq is a vertexof I forwhich

Ai belongs to Y(x), then (2.11) can be used to map Ari into a point y e M. The set

[r(tx,U,S) of vertices of I that can be mapped onto M in this way shall be called the

patch' corresponding to the information x..U,.-

An idealized version of our algorithrn can now be formulated as folloc,:.

(1) Select a reeence ertex,=,* of Z

(2) select a reference point x= x* of M

". S

> .: ..-,. . , +/ , </ ,.... .. . -.,,,,, ,. ,.. ,,-; .. . . ,.. -. , .... .. ...
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(3) initalize the moving frame aloritm at x* and e:M 0 be the

-'. s~ubset where, by Theorem 2, this algorithm applies, ', St

(4) mark the vertex as used; (4.3) "

(5) while x belongs to MO

(Sa) mark as a 'center-
(Sb) compute the frame U = LKx) by the moving frame algorithm,

(5c) select all vertices of the patch r(.,xU,6) which have

not yet beenmaked"use

(5d) use (4.2) to map these vertices onto x+TxIM and mark them "used':

(5d) use the Gauss-Newton process to project the resulting points

from x+TxM onto M;

(Se) choose a "used" vertex of I not marked a "center_

and letx be its computed image on M.

5)h

The points computed on M inherit the connectivity pattern of the original sinplices of

Z wich in turn induces a simplicial approximation Myofa segnentofM in Pn. The

- algorithm is still idear in nature since, in practice, the sets Mo and r((x,U,8) are not

known explicitly. Without this knowledge the computation may haIt when the iteration

in step (5d) fails to converge, that is, when we encounter a point in the affine space

+TxM of one ofthe centers x which does not belong to the neighborhood V(x)
. spectied in Theorem 2. A second possibility for failure arises in the execution of the -c

. rnowY!n frame algorithm in ste p (5b) when the selected center x does not belonq to MO

In order to make the algorithm practical. we replace the "idear' patches r(,xU,8) in

step (5c) by "standardized" patches ro(,) The definition of these patches depends on

.?/-K;Q0?tK:x .. t.;Vy;- 2 v ;- -:ct---§.-.§2.~ 2* - :
.. t.h tS:, 4 ,.,,-- .aJ:-:-..I-- t
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the specic reference tiangulation in PP. As an example, consider the earlier

mentiJoned triangulation on R2 consisting of equilateral triangles produced by pivoting

by reflection from the tiangle (4.1). Then the standarized patch for the center point

(0,0) in Figure 1 is the hatched, star-shaped region and for any other vertex t is

obtained by obYious translation. Wth this standard patch the progress of the algorithm

ts easily fol!lowed in F aure 1. There, at each vertex, the second o the two integers is a

8,25

9,ZS..9,25. 8 ,22- 0.8 -?,158- 7,14- 7,17

..- .0,9 __ 0, / 3.. .

9, 29-9,27 -_ 0 -. 0, 0 - 0,1 - 7,16 - 7,19\ /X \/" / "
10, 30 - 0,10 O 0, 0 . 0,12 .12,41

I~~~~0, 33 1 0, 31 1 0,32 0 , 11 11, 37-___.12,40 _12, 42 I

~\/\/\/\ /
10,3)4._.11, 35_ _11,3)6 11,3v

11,78

-w"r"a, Filure 1 :.
'-.9

-.-

-' N
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counter and the frst one identifies the "center" t that is used in mapping that vertex

onto M. Thus after the initial vertex 0, the nodes 7,...,1 2 become centers which serve to

map the nodes 13,...,42 onto M. Then the process continues with nodes 17,18,19, 23,

'* 24, 28, 29, 33, 34, 38, 39,42 as centers. This is no longer shown in the Figure, but, in

.* practice, we have ahways continued through this futher stage. It results in the earlier

mentioned total of 114 triangles involying 19 centers and hence as many Jacobian

evaluations.

Once a standarzed patch ro( ) is used in step (5c), a suitable drergence check

• has to be built into the Ga.uss-Newton process. If in step (5d) this check is riggered.,

then the corresponding vertex , of I is flagged as unusable. Such unusable vertices

. are excluded from the further computation. A sirnilar procedure may be followed when

in step (5b) the moving frame algorithm fails. However. in the later case it is often

5 advantageous to re-intialize the moying frrm algorithm at one of the successfuly

. computed points x on M. Of course, then the cornputed basis U~x) has to be used as

the reference mabtx To .

The above provisions may result in tiangulations that cover a somewhat irregular

domain on M. Fortunately, in practice, this does not occur as frequently as might be

expected, provided the steplength 8 is not chosen too large. Alternately., it is natural to

consider a procedure which adapts & in cases of failures and hence which produces

r equlartriangulationsonM. Such a program is nowbeing rnplemented. -

, '4
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5. Numerical Experiments

In this Section * present resuls of some numerical expereners wth the

triangulation agornthm The method produces a walth of numerical data which

cannotbe reproduced inthe limited space ofthis paper Atthe same time, iisa

chalenglng problem to inyent instructiye graphical representations of mantolds of-

d nension laroer than 2. As a consequence, only some graphical results for

two-drnensional ma nifolds are shown here. It is hoped that other experments with

h iaher dmensional rmanitoids can be presented elsewhere.

An Exotherm Reaction: As a frst exanple e consider a simple transport model

for an exothermic, first-order reaction-scheme discussed in [41 which, in

dimensionless form., leads to a to-point boundary Yalue problem

(Du)' + ko(y -u)exp(-,(1.uy 1)=0, u(0)=u(L)=0 (5.1)

The drnensionsless parameters p and A inyolve the constantconcentration and

temperature on the outside of the system, anC for the calculation ee follow 141 and set

D= 1, L= 1,and k0= 107 The standard finite difference approximationot (5.I)on a

uniform mesh xi= ih, i= 0,1, ..,n+l h=(n+1) then produces a nonlinear equation

of the form

x"-1 + 2xl -x 1 ko(P-x)exp(- 1x)- 1) .. .... n. xo  Xn+1 = 0 (52)

Fo-r = 1 there is a sirple turning in X near?, = 22 ,wich was calculated with the

contnuation code PITCON and rr=1U0 This point w-s then used to initialize the
--

'p1



ranubona~nlortnm. Here --as in the susequent example -- the reference

,. iar ngulation in P2 was ge nerated by repeated prvotlng by reflection from the

equilateral triangle (4.4). The stepsize in the affine mapping (4.. )was 6 = 0.4. Fiure 2 Z-- .

* shows the resuts of this triangulation More specifically, the intersection of the

computed srmplicial approxrnabon M, with the (A, p, xc) -space is shown, where xc is

-. the computed x-Yalue at the center of the interyal. The coordinate axes are slightly

rota ted and one see clearly the starshaped pattern of the reference hrlanqulation of

F Figure 1 as t was mapped onto the manold T he floordothe valley actually

represents a foldline as can be seen in Fioure 3, where the same surface in (AX , xc) -

space is propected onto the (A, p) -parameter plane. It shows also that the location of

the turning point in A depends approximately linearly on p.

A Shallow Crcular Arch As the second example we consdera finite-elemernt model

. for the deformaion of a thin, shallow, crcular arch which has been used as a test case

by many authors . appears to go back to A. C Waker 1I 9 and we employ here the

* same formulation as in [1 3] In particular, in a (re)-polar coordinate system with the

vertical d rection as the r-ax is, the unloaded configuration of the arch is represented by

t the crcuar segment ((re)I r = 10, -e : e , eo = 15 and, for pinned ends,

- the drnensionless total potential energy and associated boundary conditions are qr'en

(w'-U) + ( ') + de (Uu) - CpJ de u(i)=w E )=u"(E,)=U, -=±, .

* whre -rres, denwe derrvatives yth respect to E) For the asymreO"ical 1bad

.0,,

'. " ", ",* " . '.- - .. ' -' ". .. - ". . '., " .- . .- - " . , .. ,* - , • " - , , . ,. . ... ' - ,' ,r ,-_ '_ -. , -' - - .. . -, .,, -.. 4
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)(1-L)A, i-e e <0, and p(e) =(1 +p.), If 0 <e E,  :.

invo lvngthetwoparametersiandXthe ioadpathforp= 0 has a bfurcation point 7':

near A = 1.9. This point was computed with PITCON and used to initialize the

triangulation algorithm. The stepstze otthe mapped tiangles was 6 = 0.5. The result- -

are shown in Figure 4 More specifically, let x denote the (dimensionless) radial

deformation at the center, then the figure shows the intersection of the manfoId with
: %

the (xc,,,p)-space projected orthogonally onto the (Aj)-plane. The cusp - bifurcation is

cleariy vistle and the sadd shape of the surface can be seen even better in the

slighl rotated Figure 5.

The problem was also run with the load function

p(9)= Al-4(p -eX6)- ], if max(-eo,wp-025eo) e r.

p e) = X+4(.-ex -I9 , i± 1 L e m in(eo, p+o025eo),

considered al'eady in [3]. In other words, the load is a piecewise-linear hat function

which has the value A at e = p and is zero outside the interval centered at p of width

0 5e o .

Figures 6 and 7 give results with this load obiredattwo initialization points More

specifica lly, the cornpu ation r for these figures were centered at the lirnit points with

respectto ) wheni.disfixedat 4=0or = 0.05, respectively Oncea airnthese lmit

points were computed with PITCOON The foldline in the (p .),)-plane has the shape-

shown in F iqure 8 and Fqures 6 arK- 7 clearly show secrrents of this fotdline In

. ' ,. Z - .. ,,, ,..% -'- ,% a,, ,.,- .. , , . ,., . . . .. m .... .



AAparticular, Figre 7 cotains one of the points where the most danweous lad occrs, 1

namely at abot= 0.1690.
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6. Outlook

The n umericalI exarjdes i nd icate that the Iang ulatio n a Ioritrn Avrs very

efficienitly even around sinulariie Thus -- as intended -it does indeed offer a new

tool for deriving irforrmation about the shape and features of the manifold. Of course, as

-menrtio ned before, v e are ab le to prese nt here o nly Some grapfl calI i rtorrnabo n a nd

none of the extensive numerical output of the algorithm. This output is available as -

irnput to vario us post-processes for extracti ng further i nformatio n. SeverlI suc h

processes are now unrder de ve lopme nt a nd '*111 be described elIsewhere i n more

-.

detail. Here ve present only a brief overyiew of some of the- posstliies

.

As noted earlier, linear interpolation bekeen the vertices of the computed

triangulaon de ines a srnplicial approximation My of the corresponding part of the

manifoldM. The poirtsoafM7cantx , used to compute further points ofM. For example

ne may proad r such point onto M by applying the corrector teration (2.11).

Alternately, can augment the system (2.2) with p appropriately chosen equations

* and then apply, say, a chord Newton method to calculate a corresponding point on M.-

1%

This approach is useful when point on M wth spectic properties are desred. For

xample, we may be interested in certain target points where the parameters have

prescrbed values In that case, these target condtions become the agnmenting

equations and we may start the iterative process from a point on MI where the

parameters, have the sp(cfied values Aucgmenting equations are also essential when

T* are interested in determinin the specit ic location of certain types of s in Foular"ies"

For the computation of limit points a comparison of various such alamentations was 4

, gryera ini 1ns and for higher order singularities the peture on suitable auqmentations

I p, "u

. prar !:rshav te p~fid alus unetig eua~n ae ls esenia wen:,
[i w ar neretedin ete~inrx] he pecficiocbonof ellin tpesof inqlartie " : t

, iForthecorputa~onof *ni pon ." comarso of vrious su .a '4,-nPios was -i . .



[111, and thereafter in[1O]D, appear to be of particular interest

For any gien functional the computed data allow us to generate contour plots on

the intersecon of the simplicial approximation MI with various subspaces. For

instance, in some structural problem we mignt be interested in seeing lines, where

some stress component is constant. ploted in dependence of certain other variables
-...

A special example of such a contour plot involves the graphical representation of lines

or fokIpdoins, As the figures of the previous section already show, our triang ulations

proy ide irtormaton for approximati ng segments of such foldlines. One approach for

detecting foldpoints is to monitor the orieration of the projection of the tangent basis

onto the parameter space. If there is a change in this orientation then we have passed

through a fokdpoint, bit the converse is not necessarily true, that is, not every foldpoint

can be detected this way. The orientabon is characterzed by the dete:minart of the

proected basis in the parameter space. Thus, if we plot lines of constant determinant

values, then lines of zero determinant are approximations of the desired foldlines. Of

course, for this " need the tangent basis at each vertex of the triangulation and that

increases the cost of the overalI a lgort However, there appear to be other possitle

techniques for approxirnating foldlines from data obtained by our triangulation

agoritlrn This will not be pursued here.

" Eyen though these contour plots only provide lines of constant values on the

sniplicial approxrnation M, rather than on M bet.. they tend to offer already good
* i:sight into the shape of the man fold. Of course, as discussed earlier., we can always
... call on various local corrector methods to project these lines onto M itself

So far we mentioned only the need for appropriate post-processing technques



A- W- .0

for analyzing the output of our triangulation method. There is also consider-able room

for iproving the algorthm iser. In particular, for large sparse problems the

QR-factoriabon may be cornpuflonally expensrve. As noted earlier, there exist

resuts for computing sparse bases of the null space of a maf (cf (5, [6D. The rotatin

requre 'for the moving ame ajortm is llkely to destroy thi spaty, and hence the

rotated basis should notbe stored but computed only as needed. In the case of low

d rnensional mantolds, this is rot Yery costly as long as the computation of the ongina I

b as is of the tangent space takes account of the sparsty structure of the Jacobia n

at..

%p
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